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Cosmological Mesonic Viscous Fluid Model 
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A class of exact nonstatic solutions is obtained for Einstein field equations in a 
closed elliptic Robertson Walker spacetime filled with viscous perfect fluid in the 
presence of attractive scalar fields. The solutions characterize strong interaction 
of elementary particles. It is also shown that the massive graviton possesses zero 
spin. 

1. INTRODUCTION 

It has been a subject of interest of cosmologists to study the nature of 
scalar fields with or without a mass parameter interacting with a perfect fluid 
distribution in order to draw an analogy of the physics of the cosmos with 
experimental results. It has also been established in quantum physics that a 
massive scalar field is associated with zero-spin chargeless particles like ~r- 
and K-mesons and the study of such fields in general relativity has therefore 
been extensively worked out to obtain a picture of space-time and the gravi- 
tational field associated with neutral elementary particles of zero spin. 

Hawking and Ellis (1973) showed that the fiat Robertson-Walker (RW) 
model with a massless scalar field can be reduced to a steady-state model as 
time t ~ ~ .  Heller and Suszycki (1974) investigated the Friedman equation 
with a bulk viscosity term for dust-filled models. Roy and Tiwari (1983) 
obtained a number of exact solutions of Einstein's equations for a viscous 
fluid with constant bulk viscosity. Mohanty and Pradhan (1990) investigated 
the problem of the interactions of a gravitational field with bulk viscous 
fluid in Robertson-Walker spacetime. Mohanty and Pattanaik (1991) also 
studied the anisotropic cosmological model with constant bulk viscous 
coefficient. 

~School of Mathematical Sciences, Sambalpur University, Jyoti Vihar, Burla, India. 
2Regional Forensic Science Laboratory, Sambalpur, Ainthapali, Orissa, India. 

151 

0020-7748/92/0100-0151506.50/0 �9 1992 Plenum Publishing Corporation 



152 Mohanty and Pradhan 

In the present paper we extend our earlier work (Mohanty and Pradhan, 
1990) to the case of a viscous fluid in the presence of an attractive massive 
scalar field. The field equations are derived and solved completely in Section 
2 for a class of exact and explicit solutions. In Section 3 the energy conditions 
are verified. In Sections 4-9 we analyze the consequences of the results 
through different physical quantities involved in the solutions. The most 
important physical consequences are discussed in the concluding remarks in 
Section 10. 

2. EINSTEIN'S FIELD EQUATIONS AND THEIR SOLUTIONS 

Here we consider the spacetime described by an isotropic, homogeneous 
RW metric 

I 1 ds 2 = dt 2 - Q2(t) ~ + r 2 dO 2 + fl sin 2 0 d~b 2 (1) 

where K is the curvature index, which can take values -1,  0, +1, and Q(t) 
represents the radius of the universe. 

Einstein's field equations for a gravitating viscous fluid with cosmo- 
logical term Ag,- s may be written as 

G u - Ro - �89 Rg~ + Ago = - k  ( T~ + ~ T~) (2) 

where T,~ is the energy-momentum tensor due to the viscous fluid written in 
the form 

T~= (e +p) UiUs-pg~ (3) 

p =p - 7/Ui;i (4) 

uiu~= 1 (5) 

T~ is the stress-energy tensor corresponding to an attractive massive scalar 
field, given by 

T,:,.= 1 v 4z  {V ' iV ' j - �89176 (6) 

Hereafter, a comma and a semicolon denote ordinary and covariant 
differentiation, respectively. 
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The scalar field V satisfies the Klein-Gordon equation 

gUV~+ MZV=O (7) 

e is the energy density, p is the pressure, and 77 is the bulk viscous coefficient 
of the distribution. 

For the metric (1) the set of field equations (2) in a comoving coordinate 
system, i.e., Ui= 8~ reduces to the following explicit forms: 

Gll = K + Q24 + 2QQ44- A Q 2 

=-k{fiQ2+I Iv~(I-Kr2)+Qz(VZ-M2V2)]} (8) 

G22-~K+ Q2 + 2QQ44- Q2 

= - k { p  + 1 [-(1-Kr2)V~+ Q2(V]-M2V2)]} (9) 

G33 = G22 

and 

where 

G44~ Q 2  3 Q ] - 3 K  

=-k {Q2 +--~ I(I-Kr2)V~ + Q2(V] + M2V2)]} (10) 

Hereafter, the indexes 1 and 4 after a field variable denote partial differ- 
entiation with respect to r and t, respectively. The velocity of light is chosen 
to be unity throughout the discussion. 

Here one can easily get from (8) and (9) that 

V1 =0 (12) 

Now the Klein-Gordon equation (7) for the metric (1) becomes 

V44+3 Q4V4-+M2V=O (13) 
Q 

g 2 =  V,3=O (11) 
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Further, equations (8), (11), and (12) yield 

Q44-�89 I( ~+ 3p) + 2 (2V~- M2V2)] (14) 

In order to avoid the mathematical complexity due to the highly nonlinear 
nature of the field equations, we assume 

2V]-MzV2=O (15) 

On integration, equation (15) yields either 

V= A e (u/'/5)t (16a) 

or 

V= B e -(M/'fg)t (16b) 

where A and B are arbitrary constants of integration. 
Now with the aid of equation (12) one can obtain the expression for e 

and/5 from (11) and (8) as 

1 - A + 3 - - ~ + 3 K / -  1~ (V 2+M2V 2) 
g=-s Qz} 8:w 

and 

1 [ m _ g _ ( a 4 ~  2 
2 P=kl Q \ QJ 

(17) 

2Q44 2Q441_ L Q Q _] 8zr (V]-MzV2) (18) 

Now using (16) in (13), one can get either 

Q = C e -(M/'/5)t (19a) 

or 

Q = D e (M/'~)t (19b) 

where C and D are arbitrary constants of integration. 
Using the values of V and Q from equations (16a) and (19a) in equa- 

tions (17) and (18), we obtain the following explicit expressions for e 
and p: 

e = ~  (_A+3M2)+3(  K A2M21e./~ a (20) 
CZk 161r / 
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and 

1 +(A M / ,  
f f=k (A-23-M2) \ 16z C-~kJ e (21) 

If the distribution is restricted with the baryotropic equation of state, i.e., 

p = ( , -  1)e, 0___,___2 (22) 

one can obtain the physical quantity 7? as 

__ N / / 2 '  "" 3 2- ~ ( 2 - 3 , ) (  K A2M2]eVSM, 
r/-3--M-k(A-~M )+3-M _C2k 16z / (23) 

The physical quantities corresponding to the alternative case given by 
(16b) and (19b) can be obtained as 

3 K - -  | e -'/~M~ (24) e=~  ( - A + 3 M 2 ) +  (kD 2 B2M2\16z / 

and 

- ~ ' ( - A + 3 M 2 ) + ~  ( 3 , - 2 ) ( k ~ 2  B2M21e-,/2Mt 
r / -  f-M--k 16z / (25) 

The metrics corresponding to the solutions (19a) and (19b) can be 
written as 

and 

ds2=dt2- CZ e-'~Mt(\l - dr2Kr 2 + r2 dO2 + r2 sin2 0 dc~2) (26) 

ds2=dt2- D 2 e,/~Mt(i d~Kr2 + r z dO2+ r 2 sin20 d~b 2) (27) 

3. ENERGY CONDITIONS FOR VISCOUS FLUID 

The strong energy condition for both solutions leads to the viscous 
analogue of gravitational mass density (McCrea, 1951), i.e., 

= p + 3p =~ (2A - 3M 2) > 0 (28) o'1 

It is clear from the above expression that o'1 > 0 only when A>~-M 2. 
This indicates that the model is physically acceptable only when the cosmo- 
logical constant A > 0. 
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The weak energy condition, i.e., 02 = (e +/5) > 0, corresponding to the 
solutions (26) and (27) leads to the following relations between the arbitrary 
constants involved in the solutions: 

16~rK> A2M2CZk (29a) 

16~rK> B2M2D 2k (29b) 

As the quantities involved in the right side of the above expressions are 
positive, the only physically realistic models acceptable are closed elliptic 
models with K= 1. Moreover, it appears that the other open models with 
K= 0, - 1 may be possible in inflationary cosmological models of the grand 
unified phase transition. 

However, the model violates the strong energy condition for A < 0 and 
this situation may also correspond to a grand unified phase transition. 

4. EXPANSION SCALAR AND SHEAR 

4.1. Expansion Scalar 0 

The values of the expansion scalar 0 = U'ii = 3Q4/Q for solutions (26) 
and (27) are 

0=• 3 ~ M  (30) 

respectively. These results clearly indicate that the models (26) and (27) 
correspond to contracting and expanding models, respectively, subject to the 
reality assumption of positivity of mass parameter associated with the scalar 
field. 

4.2. Shear ~r 

The scalar shear ,~ =~uu0- for the models (26) and (27) is given by 

0-= 16 Q = 8 M  2 (31) 

Here, 0- being positive indicates that the shape of the universe is pre- 
served during the evolution in the case of both models. However, both 
models do not admit rotation (i.e., W~j= 0). 
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5. BULK VISCOUS COEFFICIENT q 

In the case of the contracting model represented by equation (26), the 
bulk viscous coefficient increases with time and we get 

as t ~ ,  ~ - ~ •  according as 7/><2 

whereas in the case of  the expanding model corresponding to the solution 
(27), we have 

as t ~ ~ ,  77 ~ const < 0 

However, in both cases the solutions lead to unphysical situations at 
infinite future. In view of  energy conditions, 77 is negative for 7/= 2/3 in the 
expanding model, which leads to an unphysical situation. But the corre- 
sponding situation in the contracting model is physically acceptable with 
constant bulk viscous coefficient, i.e., 

v/2 (2A - 3M 2) 17= r/o = ~-M- ~ 

As 7/> 0, the models are physically acceptable at the initial epobh if 

37 / -2  
( ~ l ) t ~ 0 >  - (~r2),=0 

7/ 

6. ENERGY DENSITY t 

Both models are physically realistic at the initial epoch provided that 
e > 0, which yields that the weak energy condition dominates over the strong 
energy condition, i.e., 

3(O'2)t-- 0 > (O ' l ) t=  0 

In a mixture of mesonic viscous fluid the big bang singularity does not 
occur at the initial epoch. This situation is similar to that of  the case studied 
earlier by Mohanty and Pradhan (1990) in the case of a viscous fluid alone. 

In the case of  the contracting model represented by equation (26) there 
may be a big crunch at infinite future, since e--, ~ as t ~ ~ .  In the case of 
the expanding model we have an unphysical situation because 

as t ~ ~ ,  e ~  a (=const) <0  

Thus, both models lead to unphysical situations at infinite future. 
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7. MASSIVE SCALAR FIELD V 

Here it is sufficient to consider the solution given by (16b) and (19b) 
since the analysis of the metric is identical for both solutions, except that 
the solution given by (16b) and (19b) represents an expanding model, while 
(16a) and (19a) represent a contracting model. It can be clearly observed 
for the expanding spacetime (27) that the scalar field V decreases exponen- 
tially with time. The energy density associated with the scalar field is given 
as (Anderson, 1967, p. 289) as 

2) 

From equation (16b), we have 

p = (3 /4)BZM 2 e-~/2Mt 

so that, in expanding spacetime (27), the energy density of the scalar field 
also decreases with time, but at a faster rate than the scalar V. For physically 
acceptable mesonic field we have p > 0. 

8. HUBBLE PARAMETER H AND DECELERATION 
PARAMETER q 

Corresponding to the metric (27), the value of the Hubble parameter 
H is 

n=a4= M 
Q 

and the value of the deceleration parameter q is 

Q44Q =--1 q = -  Q~ 

Thus, the values of H and q might seem to suggest that the spacetime 
represents a steady-state model, but this is not so, because in a steady-state 
model the curvature index K is necessarily zero (Weinberg, 1972, p. 459). 
Moreover, we found earlier that models represented by either (26) or (27) 
are physically realistic only when K= 1. 

9. THE PARAMETER 7 

For many realistic physical situations it is required that E >p  _> 0, which 
yields restrictions on the parameter ~,, i.e., 1 < ~ <2. These restrictions 
include the extreme cases corresponding to the viscous-dust (~ >p = 0) and 
stiff-perfect-fluid ( ~ = p > 0 )  models. It is interesting to note that the 
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spacetime does not have any singularity in any finite epoch and one of the 
alternative cases corresponding to e = p =  0 removes the viscous fluid from 
the cosmological models obtained earlier. 

10. CONCLUSION 

It is well known that the massive scalar field, considered in the present 
investigation with mass parameter M, is related to the mass m of a zero-spin 
particle 

g _ m  

h 

When the mass of the scalar field corresponds to a neutral meson, the Hubble 
constant H for the solution (27) becomes 

M rn~ m~ 1022 H . . . . .  ~- 2 • sec 

where m~ is the mass of the neutral Jr-meson, 
The characteristic time corresponding to the value of Hubble parameter 

is given by 

T = H  -1 -~5 x 10 -23 sec 

This value of the characteristic time corresponds to the strong interaction 
associated with elementary particles (Isham et al., 1971). However, in the 
cosmological case 

H~_mg 
h 

where the velocity of light is unity. We conclude that the mass parameter 
involved in the Klein-Gordon equation corresponding to the mixture of 
mesonic viscous fluids is the mass of the graviton. Thus, this indicates that 
besides the viscous perfect fluid, the spin-zero graviton is also responsible 
for cosmological effects. Gursey (1963) showed that this spin-zero graviton 
yields cosmological effects, while the spin-two graviton yields gravitational 
attraction. 
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